
11*5 - A KITER VAT OF CabINS. (U)

WSCLAMIIIEROC-1RW67 "L

I .11111.

140 2.

1.8

11111_1.25 11114 ____

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-_I963-A

LEVr

I TAS, A BTTER WAY OF CODING

JOhn Fel bian

J&J

Moo ~ utwn~UJUIE

so

W"O" 1ftlw tv"6 flfu th e UAN Public Affairs (PA) and
'~0 ime)~UnA TdtmcM aforttce Service (NRTIS). At NIns

~t4*aflbto tWo senra public, Including foraip nations.

he. bees rnInmsV aIds approved f or publication.

0ffZatUtgsteAplication" Branch

03* R. LASTM. Colonl, SAP
'bt# Xueflts a sa cp"snanc DiviuicaM

A 4..

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

..-. '~PaYWBa/ GOVT ACCSION NO 3, RFrC1PIEN 1'5 T 'OG NUMfftW_

". '?iL E (and iS.bitie) 5 TyP_

6 ITAS - A ETTER WAY OF CODING- In-Hou Rept.,/
6/ . . . PERFO *M6 s ft F 0 kRT NUMBER

- ___ N/A
7. AUTHOR(s) S. CONTRACT OR GRANT NUMBER(.)

-F N/A

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASKAREA 6 WORK UNIT NUMBERS

Rome Air Development Center (IRAE) 20 2 1I)001 _
Griffiss AFB NY 13441 31011G

II. CONTROLLING OFFICE NAME AND ADDRESS "6"10+Tf

(/ Mare 980
Rome Air Development Center (IRAE) -1. NUMBER OF PAGES
Griffiss AFB NY 13441 55
14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of thie report)

Same I) -/UNCLASSIFIED
Stj15a. DECL ASSI FICATION/DOWNGRADING

N/A SCHEDULE

16. DISTRIBJTION STATEMENT (of thle Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, it different from Report)

Same

18. SUPPLEMENTARY NOTES

None

19. KEY WORDS (Continue on reverse aide if necessary aid identify by block number)

Interactive Programming
Modeling Techniques
Programming Languages

Simulation Techniques

20. ABSTRACT (Continue on rever*e side If necessary and identify by block number)

')This report describes a software program which can be used as an alternative

to print oriented user languages such as BASIC and FORTRAN. The design and

use of this Jianguager5is described. The language uses a basic kernel of

graphic symbols interconnected by the user to designate data flow within the
program. This allows the Itas user to simulate and model scientific and

engineering problems directly.

DD JT 1473 EDITION O 1NOVAO IS OBSOLETE UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (110en Data*L

UNCLASSIFIED
SECURITY CL ASSIFICATION OF THIS PAGE(IWhe D~t4 Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF TH4IS PAO~RIhon Data Entw.E)

TABLE OF CONTENTS
Page

SECTION I

The Problem 1

SECTION II

The Solution 3

SECTION III

How to Use It 5

SECTION IV

The Vocabulary 7

The Arithmetic Operators 7

Statistical Operators 7

Boolean/Logical Operators 7

Control Operators 7

Complex Operators 8

Models 8

SECTION V

Special Features 9

Paging 9

Zooming 9

Interpolation 10

SECTION VI

The Design 11

The Itas Environment 11

The Graphics Module 11

The Graphics Data Base 13

The Execution Module 13

Execution Module Data Base 14

SECTION VII

The Future 15

Multiple Outputs 15

Macroing 15

Postscript 16

Pon

TABLE OF CONTENTS (Cont'd)

APPENDIX A
Page

Examples
17

APPENDIX B

The Itas Vocabulary
23

REFERENCES
5

iv

LIST OF ILLUSTRATIONS

FIGURE Page

1 An Itagram of a first order recursive digital filter 3

2 The Itas virtual paging concept 9

3 An example of interpolation 10

4 A simple Itagram 12

A-l Itagram of first order recursive filter 17

A-2 Page one of the Itagram 19

A-3 Page two of Itagram 20

A-4 Page three of Itagram 21

.jj--

V o

PREFACE

This In-House Technical Report cannot be associated with any single
contractual effort. It summarizes and generalizes results derived from
several RADC contracts. For further information contact RADC (IRAE),
Griffiss AFB NY 13441.

This report introduces a different concept in programming developed
and implemented under several government contracts. The software described
herein was produced by Dr. R. H. Cofer and his associates at the Harris
Corporation in Melbourne FL under RADC sponsorship. Currently, this soft-
ware, Itas is available for use on both the Univac 1110 and the DEC
System-l0 computers.

The software program described here is an example of the use of a
visually oriented highly interactive block diagram user language, to provide
an alternative to print oriented user languages such as BASIC FORTRAN, etc.
The concept evolved from the need to provide a user transparent programming
methodology for non-computer programmers.

The design and use of a symbolic man-machine interface language is
described. The language, employing graphical symbols displayed on a cathode
ray tube, eliminates the tedium and time delays associated with conventional
language programing.

G!
vii

SECTION I

The Problem

Our objective was to develop a computer software system which can be used
to stimulate the creativity of engineers and scientists who are engaged in
solving data analysis and engineering application problems in a computer
environment. It was apparent that the conventional approach these engineers
and scientists were employing to interface to the computer, i.e., writing
and using English language (e.g. FORTRAN) programs did not satisfy the
objective. Characteristically, an engineer would depend on a computer
programmer to translate his problem into the appropriate algorithm, debug
the program, and provid& the polished product to the engineer. This pro-
cess is cumbersome and inefficient because of the temporal gap between the
statement of the problem and the availability of results for analysis. As
a result, the engineer's ideas, perception and intuition for the specific
problem that he was attempting to solve becomes diluted. This situation is
exacerbated by the existence of the programmer middleman who further isolates
the engineer from the computer solution implementation. In seeking a method
of improving the situation, we naturally focused our attention on visually
oriented communications media, being guided by the ageless adage about the
relative merits of pictures and words.

-- ... -... a>

SECTION II

The Solution

First, the general approach and procedures followed in implementing specific
engineering problems were analyzed. We found that this process can be viewed
as a two phased process: a solution formulation phase followed by a solution
implementation phase.

Of the two phases, the interesting phase is usually the formulation phase
with the actual implementation phase a straightforward, vapid process. The
answer to the problem described in Section I above, therefore, should de-
emphasize or eliminate the software implementation phase and concentrate on
focusing the user's attention on the formulation process. We have designed
and coded a software program which achieves this objective. Our program is
named Itas.

Itas is a computer program which enables the user to create other computer
programs.

The Itas concept derives from the fact that topological graphs (i.e., system
block diagrams, flow charts, logic networks, electronic schematics, etc.)
are frequently employed in the description of engineering application prob-
lems. This is so because topological graphs simultaneously communicate,
instruct, report and store information in a very readable and suggestive
format.

The Itas system is based on an analog computer metaphor. The graphic ele-
ments (building blocks) are arithmetic operators, Boolean operators, cal-
culus operators, control functions, and specific models. Each element has
input/output stubs that designate data flows in the program. An example
of an Itas program, an Itagram, is shown below:

YXn-l Y n

' Input Gan+ Delay

•Del ay Gai

Figure 1 - An Itagram of a first order recursive
digital filter.

3

ktmuIeN PAM NO FILMED
MAR

Using a light pen, the user Selects Itagram ln tsfo n xesv
menu, connects them, assigns values to the inputs anwtce thntor

exec te, all n r al t me. Itas helps the user to visualize several events
Ocring simultaneously and to evaluate the effects Of their interactiowith each Other. Unlike Itas, conventional Computer Programming isoftentedious work. It requires an intimate knowledge of the capabilities of the

Programming language, the efficiencies Of the comPiler,/assemble
and some-

times even the organization Of-the computer In order to generate the desired

algorithm. Itas, however, is SO close to the process Of for'mulating the solu-
ttion thar tcuer i t stIs maintained through the algorithm implemen-
to n t roes In fact, the coding implementatio Process istransparent

toteItas user. he Itagram code is automatically compiled bY Itas, and
the Program is ready for execution.

i

4

SECTION III

How to Use It

Itas is designed to closely follow a natural approach to problem solving.
The Itas user first describes his problem on paper in terms of a functional
diagram consisting of mathematical interrelationships among variables, i.e.
in terms of mathematical equations. The result will be a diagram similar to
Figure 1, but will probably not use the exact complement of Itas elements.
This diagram is next translated into an Itagram using the Itas vocabulary
given in Appendix B. This step is critical and is both the strongest and
weakest link in applying the Itas technique. This is where the user's
ingenuity, inventiveness and skill are put to the test. The variable(s) of
interest need not be isolated explicitly because Itas has an implicit
equation solution capability. With the paper Itagram complete, the user is
ready to use the Itas program.

Sitting at the graphics terminal, the user transcribes the paper Itagram
onto the CRT screen. This is accomplished interactively with the aid of an
input device such as a light pen. The visual nature of the man-machine
interaction causes the user to actively participate in the algorithm imple-
mentation phase. In fact, the user is in control, with the Itas software
only a tool in his hands. The Itagram is designed using specific rules and
conventions. When the Itagram is complete, it is ready for immediate execu-
tion at the user's command. The results are available for inspection immed-
iately. Herein lies the most powerful attribute of Itas. We are using the
computer in a positive active role, i.e. the user has to determine why an
answer is wrong and take action to correct the fault. This is accomplished
simply by recalling the Itas diagram, editing its structure, and
reexecuting.

The Itagram can be saved for future reference or for archival purposes. A
hard copy of the Itagram can be output for use in publications/reports.

5

7

SECTION IV

The Vocabulary

Creating a useful capability required a kernel of symbolic elements to be
defined. To that end, the initial Itas vocabulary consisted of twenty
symbols. The current Itas program comprises an expanded set of fifty-one
symbols. For convenience, we will divide the set into six categories:
Arithmetic Operators, Statistical Operators, Boolean Operators, Control
Operators, Complex Operators, and Models. Most of these operators accept up
to four inputs. However, all provide a single output.

The Arithmetic Operators

Nineteen operators are available for use in Itagrams. These are: Addition,
Subtraction, Multiplication, Division, Sine, Arcsine, Cosine, Arccosine,
Tangent, Arctangent, Exponentiation, Square Root, Raising to a Power,
Natural Logarithm, Common Logarithm, Absolute Value, Constant, Gain, and the
Modulus Operation. The functions are self-explanatory.

Statistical Operators

This category comprises of five operators: Summation, Summation of Squares,
Summation of Product, Counting, and Random Number Generation. These opera-
tors are useful in calculating simple statistical information.

Boolean/Logical Operators

The seven operators in this categroy provide the capability to perform
logical operations within Itagrams. These operators are the logical AND,
NAND, OR, NOR, NOT functions and the FLIP-FLOP, and COMPARE functions.
Boolean operators function with two inputs where applicable.

Control Operators

The seven operators in this category control the flow of data into, within,
and out of the Itagram. The operators are: Input, Output, Time Generator,
Display Output, Kill, Pause, and Run Time Estimator. The Input/Output ele-
ments are the primary vehicles for entering/retrieving data files into/from
the Itagram. The data is transferred via file names. The Time Generator
provides the incremental cycle time for each execution cycle, i.e. Ti = To
+ (i+1) T. The Kill and Pause elements allow stopping execution when a pre-
specified condition occurs. The function of the Run Time Estimator is to
generate an estimate of the approximate execution time for the Itagram.

7? j'N PNN

- wO~ FRANK

Complex Operators

The complex operators are the following: Integration, Differentiation,
Time Delay, Sample and Hold, Implicit Equation Solver, Multiple Arithmetic
operator, Function Generator, and Variable Equation operator.

The Implicit Equation Solver consists of two elements used together to
provide an interactive solution to an Implicit Equation where it is impos-
sible to segregate the desired output variable on one side of the equation.
The Multiple Arithmetic operator provides the means for performing the
four simple arithmetic operations, i.e. addition, subtraction, multiplica-
tion, and division, in a single graphical entity. The Function Generator
allows the user to specify a functional relationship between two parameters
creating a piecewise linear approximation to that relationship. The Vari-
able Equation Operator allows the user to designate compound arithmetic
functions within one Itagram element. The allowable arithmetic functions
are any of the nineteen opeators defined in the arithmetic category
above, e.g. Y=SQRT (A) + COS (B) + LOG (CD) where A, B, C and D are the
four inputs to the Variable Equation operator and Y is the output.

Models

This category includes three model elements. These were included to support
the specific Itas user. The models include an Atmospheric Model, an Earth
Model and a Gravity Model. All models require two inputs representing
geometric altitude and geocentric latitude. The model outputs are user
selectable and include constants and variables such as atmospheric tempera-
ture, atmospheric pressure, density, earth rotation rate, gravitational
constant, flattening factor, eccentricity, radial and transverse components
of gravitational force, among others.

8

SECTION V

Special Features
The following features are included in Itas for the convenience of the user:
paging, zooming and interpolation.

Paging
The increasing complexity of large Itas networks has been dealt with
through the use of a virtual paging concept (Figure 2). The Itas paging
concept enables large Itagrams to be displayed on the CRT at one time--a sortof wide-angle look. Employing paging, the user can build an Itas network
of several (up to niney display pages where each display page is identifiedby its position in a virtual matrix array of pages. The Itas network canbe started on a given page and continued into adjoining pages using desig-
nated connector elements, which link related elements on different pages.This concept extends the maximum number of Itas elements allowable perItagram beyond the physical dimension of the CRT display.

page 1

page 5

page 9

Figure 2 - The Itas virtual paging concept. The pages are numbered and areaccessible one at a time in the Edit mode. Each square covers the entire
display area.

Zooming
Zooming allows the simultaneous display of any four adjoining pages in an
Itagram. While in the zoom mode, the user can also display all nine pagesof the Itagram. Editing is not permitted in this mode. Zooming is only
provided as an aid to maintaining proper perspective of large Itas networks.

!9

)

Interpolation

Since Itas uses discrete data files as inputs, it is imperative that proper

time synchronization be maintained among the various data inputs. Therefore,

data values must be available at given points in the Itagram at identical

time intervals. Since this is not always a true condition, the Itas inter-

polation feature automatically interpolates between data points. Itas

interpolation allows the user to specify the closeness of fit desired. An

N-th degree Lagrangian polynomial interpolator is provided.

Input A

t . ,

.± Input B 0

1 TIME

InputC

Figure 3 - An example of interpolation. Input B does not have an assigned
value at times ti , ti- 2 ' ti+ 2 . Input C does not have an assigned value at

times ti_1 , ti+ I, ti+ 3, etc. Itas will automatically assign values at these

times (x's). The closeness of fit is specified by the user prior to execu-

tion. Itas automatically defaults to a straight line (N=I) interpolation.

= Interpolated Value

A 10
A.

SECTION VI

The Design

The Itas Environment

The Itas software was developed for use on a Digital Equipment Corp PDP-1O
computer with TOPS-1O time sharing operating system. Itas was required to
be imbedded into an existing software program operating under the TOPS-1O
monitor. The name of that program is DTEA. Itas is accessed from the
first level DTEA menu and returns to DTEA at the same level. The current
Itas employs the Sanders Associates ADDS-900 graphic display terminal
as the man-machine interface. The software is coded in Fortran IV and is
structured and modularized. The software is coded to permit future conver-
sion to reentrant operation. The Itas software consists of two basic
modules and supporting data bases. These are the graphics module and the
execution module.

The Graphics Module

The graphics module interfaces with the user in generating the Itagram.
It maintains the graphical data base necessary for construction of a visual
image of the Itagram. The module provides the necessary editing functions
(See Figure 4). The generation of a complete Itagram is the process of
positioning and joining various Itagram operators and connecting lines
into a compilable, executable entity.

411

CL VZ L, 0
'nr~ a. (Jj z 5) oe r. -

IL J a b.. CCAU.

CAe w S.- Ck 0: 0 t,- 1K w (w w- w w 7. X I j~

0 0 m _- Zo a a o. w.. a at EQ c 2. 1 2

IL E

cu a
4.)

)

.16J

x Li,

C~C.

C> V

0j 4)

+4-

x x

0i c)

.4)
V) CA 4-)

to 0

- 4J 41

-

.L- 4-l

12,

The Graphics Data Base

The graphics data base supports the graphics module and is comprised of
five data tables: the item table, the symbol table, the net list table,
the net store table, and the bulk store table. Entries in all tables are
indexed and cross referenced by data pointers. The table contents are
as follows:

Item Table - All displayable Itagram related data is composed of
units called items. An item in the table can be either a symbol or a line
network.

Symbol Table - The symbol table maintains information on each symbol
(i.e. operator) in the Itagram. One table entry is included for each
symbol.

Net List Table - This table maintains a list of all line segments
connected to a given symbol.

Net Store Table - Each entry in this table describes a line network in
the itagram.

Bulk Store Table - This table is used to store all remaining data
required to completely reconstruct the Itagram. This includes relative
positions of symbols and connecting line networks on the CRT screen,
as well as all annotative textual information.

The Execution Module

Diagram execution is accomplished by a table driven compiler. The table
driven compiler consists of a main program and all subroutines and functions
that could possibly be used in any Itagram. The execution module's prepro-
cessor generates a run table that determines the order of execution of the
various operators. The ordering algorithm scans the run table and calls the
appropriate operators in the correct sequence.

The execution module is transparent to the user. Its primary function is
translation of the graphical data base to an executable computer program.
Prior to execution of a given Itagram, various input parameters are specifi-
able by the user by interacting with the execution module menu. Consequently,
a given Itagram can be executed repeatedly with different start/stop times
and/or different input data files.

J 13

Execution Module Data Base

The components of this data base are the block table, the indirect driver
list, the parameter list, and the ordering table. The contents of the block
table, the indirect driver list and the parameter list are modified versions
of their counterparts in the graphics data base. The block table contains
an entry for each graphical element in the Itagram. The indirect driver
list associates Itagram input parameters defined at execution time with
specific entries in the block table. The parameter list contains all para-
meters associated with a given graphical element. The ordering table is
created within the execution module by the ordering algorithm. The ordering
table is the heart of the execution module; it defines the program execution
sequence within each time cycle.

14

Neill

SECTION VII

The Future

The following features are potential improvements or extensions of Itas:
(1) allowing multiple outputs per symbol, and (2) incorporating a macroing
capability.

Multiple Outputs

A limitation in the current version of Itas is the inability to designate
several outputs from a given element. The restriction to one output from
any symbol limits the full exploitation of the Itas concept. For example,
availabilLy of multiple outputs per symbol will accommodate a conditional
branching capability in Itagrams. More significant, however, is the poten-
tial utility of multiple outputs in generating a macro-Itas capability.

Macroing

A macro is a mini-Itagram i.e. a user defined Itas symbol that replaces
a set of connected existing Itas symbols. A section of an Itagram could
then, for example, be defined by the user as a new Itas macro element,
thus becoming an entry in the Itas symbol menu (See Figure 4), which is
recallable and useable in other portions of the Itagram. For example, the
first order recursive digital filter defined in Figure 1 can be defined as
a macro, becoming a simple graphical entity with one input and one output,
thus allowing the generation of an uncluttered cascaded higher order digital
filter that is simple in appearance, and occupies the identical CRT area
currently required to define the first order filter.

I ~ 7I -15

Postscript

The Itas software with its graphical Itagram format is successfully imple-
mented in a scientific engineering environment. It is currently operational
on two different computer systems, the DEC System 10 and the Univac 1110.
Itas is being continually improved and refined while undergoing on-the-job
evaluation. Its application to diverse disciplines is easily achievable
because of its design which allows, among other things, for the systematic
addition of new and special symbols to the basic structure.

16

APPENDIX A

Examples

Example No. I - A first order digital filter.

Consider a first order recursive digital filter (low pass) of the form:

(A-l) Y (n) = a x (n)+aIx(n-1)-bly(n-1)

where x(n) is the value of the nth input sample, the coefficients ao, a, and
b determine the response, and y(n) is the filter response to the input, x(n).
The implementation of this filter is straight forward and is shown in figure
A-I.

E Y (n)y(n-l)
G na+- n Delay Gain

(ao) (-bl)

Input n) Delay x(n-1) Gain Outp t I

(al) (n)

Figure A-i. Itagram of first order recursive filter.

J 17

Example No. 2

Given a set of values (zi , Yi) i+o,1...N, the least square line approxima-
tion is given by:

(A-2) Y=a o + a z

y F zz z z
where , != 1) -

-o L

and

The Itagram which implements this solution is designed on three Itas pages
These pages are shown in Figures A-2, A-3, A-4. The paging capability is
used here for purposes of illustration. The entire Itagram can be drawn on
one page. This Itagram does not represent the most efficient (i.e. least
number of elements) Itas format. The use of the Calculator operator, for
example, will reduce the number of elements but it would also make the data
flow more complicated.

18

4-)-
CL C-

4.)- -) D
= 4k =

C)~ , ~

>N 1 4

_ _ I _ _ _

En

IQ_

4-4

4c'

CL 0

1 19

Input _______

#1

a1 Outpt

Flput-

Figure A-3 - This is the second page of the Itagram for solving equation A-i

20

The KILL block terminates execution in an orderly fashion (i.e. closes all
files) whenever the input value is 1 0.

n
Count

C u t+

Kill

Const
(N-i)

Figure A-4 - This is the final page of the Itagram solving equation A-1.
This page is separate from the main flow and its function is to terminate
the program when N sets of values have been processed.

21

lv I

APPENDIX B

The Itas Vocabulary

Elementary Arithmetic Group

1. Adder

A

The sum, Y=A+B+C+D is formed where at least input stub A is connected.

2. Subtractor

B -

C

The difference, Y:A-B-C-D is formed where at least the input stub A is

connected.

3. Multiplier

A
B Y
C X

The product, Y:AxBxCxD is formed where at least one of the input stubs is
connected.

Note: The parameters referred to in this appendix are available for
modification via the "Modify Parm" function in the Itas menu (see
figure 4). This action is usually accomplished after the Itagram
is drawn on the CRT screen. All Itas blocks contain default
parameters. Parameters need only be modified when required.

23

Lemnim PAM N FIME "

KA

4. Divider

The quotient, Y= A/B/C/D is formed where the

input stub A must be connected.

If one or more of the input stubs B, C, or D is

connected and sometime during the execution has a

value of 0.0, the run is terminated.

5. Sine

The sine, Y=sinJA*B+C*D Iis formed where at least

One of the input stubs is connected.

If A and B or C and D are not connected then their

product is 0. If either A or B is connected, but

not both, then the product A*B = A or B depending

on which one is connected; similar logic is applied

to C and D.

Inputs are in radian measure.

2~24

6. Cosine

B
CS

The cosine, Y=cosIA*B+C*DIis formed with logic

similar to that used by the SINE symbol discussed

previously.

7. Tangent

A

TAN Y
-

The tangent, Y=tan IA*B+C*DI is formed by first

finding the sin IA*B+C*D and the cosIA*B+C*D and

then forming Y=siniA*B+C*D I/cos IA*B+C*DI, where

the cos IA*B+C*DIt 0. The method used to evaluate

the argument is similar to that used by the SINE

function,

8. Arctangent

Ar ATAN

The arctangent, Y=tan - lIA*B+C*D is formed with

restrictions on the input stubs similar to those

discussed under the SINE function in this paragraph.

25

II

The output Y is in radians and is in the range

- Tr< Y <7T
f. - _f .

9. Arcsine

A
B ASIN Y

The ar sine, Y=sin- IjA*B4+C*D Iis formed by finding

tan' JA*B+C*OJ /SQRT (, [A*B+C*D * IA*B+C*D1)}
The relstrictions on the input stubs are similar

to those imposed by the SINE function with the

additional stipulation that if at any time

jA*B+C*DJ*{A*B+C*DJ is I or larger, then the ex-

ecution is terminated.

A parameter is provided for but not used.

10. Arccosine

A
B_ ACOS Y
C

The arccosine, Y= cos- IA*B+C*DI is formed.

The input argument must be 511

26

11. Exponential

A
B
C- EXP Y

D,

The exponential, Y= EXP fA*B+C*DI is formed where

the evaluation of the input argument is done in

the manner discussed in connection with the

SINE function.

12. Square Root

A
B SQRT Y

The square root, Y=[A*B+C*Dj**0.5 is formed where

the input argument is computed in the same manner

as is the input to the SINE function.

If, during the execution of a diagram, the argu-

ment is less than 0.0, the run is aborted.

13. Power

A
POWER Y

C

27

,k.

Raises the input argument to a power,

Y=(A*B+C*Dv**P 2where P2 is the second parameter

entered. The first parameter is ignored and

therefore should be left at its default value.

The computation of the input argument in the pro-

gram is rather complex and, consequently, the

user must exercise great care when connecting the

input stubs A, B, C and D. The program packs the

input drivers in order of their placement on the

symbol into the stubs A then B then C and then D.

It is from this final order, not necessarily the

original order, that the input argument is com-

puted. It is best to use the inputs in order

and not to skip any.

14. Natural Logarithm

LOGEY

The natural logarithm, Y= LOGE(A*B+C*D) is formed

where the input argument is handled in the same

way the SINE function handles it.

28

15. Common Logarithm

A
B LOGIO Y

D

The logarithm base 10, Y=LOG Io(A*B+C*D) is

formed where the input argument is determined

the same way as the SINE function.

16. Absolute Value

A
B ABS L
C

IF - I

The absolute value, Y= ABS(A*B+C*D) is formed

where the input argument is determined in a similar

manner to that described under the SINE function.

17. Constant

CON

A constant value, Y= P is formed where P is the

value of the parameter.

29

.

18. Gain

A

The gain, Y:P 2*(A+B+C+D) is formed where the gain,

P2 , is the second parameter, the first parameter

is ignored, and any unconnected inputs stubs are

ignored.

19. Modulus
A

MOD
C

D

The modulus function, Y=AMOD(A*B+C*D ,Pl) is formed

where the computation of the iput argument fol-

lows the rules described for the POWER function.

The modulus value is equal to the input parameter

value.

Statistical Group

20. Summation Single

Ai SUMX

30

MIEN-

A running sum, YN=i 1 N AN is formed

where the present sum is equal to the previous

sum, plus the present input.

21. Summation of Square

Ai SUMX2 Yi

The running sum of the input squared,

N
Y= Ai*Ai = YN-1 + AN*AN is formed where

i=1

the present output is equal to the previous out-

put plus the square of the present input.

22. Summation of Product

SUMXT VI
Bi

The running sum of the input product,

N
N = Ai*Bi = YN-1 + AN*BN is formed where the

present output is equal to the previous output

plus the product. of the present inputs.

31

.4 "'

23. Cycle Counter

COUNT Y i

The present cycle number, Y . i is formed whereI

i is the present cycle number.

24. Random Number Generator

RAND Yi

The pseudo-random number, Yi = f(Yi-,) is formed

where the current random number is a

function of the previous random number. The

first random number Y1, is a function of the in-

put parameter, which acts as the initial seeding.

Logical Group

25. AND

A
AND Y

The logical AND, Y= A'B is formed where the in-

puts A and B are required. An input is treated

I32

I

as a 1 if it is greater than 0.0. Otherwise, it

is treated as a 0.

26. BAND

NAND
Y

B_

The logical NAND, Y=(A.B) is formed where the

requirements on, and the meaning of, the inputs

are the same as those outlined previously for

the AND function.

27. OR

OR Y
B_

The inclusive OR, Y=A+B is formed where the re-

quirements on, and the meaning of, the inputs are

as outlined under the AND function.

28. NOR
-A

NOR Y

B_

The not inclusive OR, Y=TA-B is formed where the

restriction on, and the meaning of, the inputs

33

amm mm l m

are as discussed under the AND function.

29. Nul

A NOT Y

The NOT function, Y=T is formed where the input

is a 1 if it is greater than 0.0, else a 0.

The output is the one's complement of the input.

30. Flip-Flop

A FLIP y

The Flip-Flop function is defined as:

yi= Yi-I when A. = 1.0 and Ai. 2 = 0.0
Yi- 1all other times

where the input is a 1.0 or 0.0 as explained

above.

The initial output of the Flip-Flop is set equal

to the parameter value setting (1.0 or 0.0).

34

Im|

31. KCOMP

A
KCOMP Y

B

The sum of the inputs is compared to 0.0 as

follows:

yJO when A Plus B is O.0

* 0 when A plus
B is<0.0

where the two inputs must exist; if not, the

program is aborted.

Model Group

32. Atmospheric Model

A
ATMO Y

B

Generates the value of a user specified parameter,

chosen from a list of five, at the input altitude

and latitude.

Y =F(A, B, P2). Input A must be connected,

indicating the geometric altitude in kilometers.

35

-- b

Input driver B is an optional input and identifies

the geocentric latitude in radians; when input B

is not attached, then a default latitude of 7/4

is used by the model.

Parameter 1 is not used.

Parameter 2 governs the output as follows:

P= 1, Y= temperature in Kelvin degrees
P2 = 2, Y= pressure in Newtons per meter squared
P2 = 3, Y= density in kilobars per meter cubed
P2 = 4, Y= speed of sound in meters per second
P2 = 5, Y= dynamic viscosity coefficient

33. Earth Model

A
EARTH Y

B

Generates the value of a user specified parameter,

chosen from a list of nine parameters.

Driver A inputs the geometric altitude in kilo-

meters and need be present only when the compu-

tation requires altitude, as in computing distance

to the center of the earth (P2=8 or P2=9), for

example, Driver B contains geocentric latitude which

is only required in the computations associated with

36

P2=8 or P2=9. If driver B is not present, then

a default of n/4 radians is used if latitude is

required.

Parameter I is provided for but not used.

Parameter 2 governs the output, Y, as follows:

P2 = 1, Y
= earth rotation rate in radians per

second
P2

= 2, Y = gravitational constant in meters
cubed per second squared

P2
= 3, Y = semi-major axis in meters

P2 4, Y semi-minor axis in meters

P2 5, Y mass to weight ratio
P2 6, Y = flattening factor
P2 = 7, Y eccentricity

= 8, Y = radial distance to surface point in
meters

P2 = 9, Y radial distance to point in atmosphere
in meters

34. Gravity Model

A
GRAV Y

B

Generates the components of the gravitational

force based on zonal harmonics through the fourth

harmonic component.

Driver A, is required, and provides the geometric

altitude in kilometers.

Driver B, is optional, and provides the geocentric

37

..... Z;n

latitude in radians; a default of ?T/ 4 is used.

Parameter 1, the only one provided, determines

which component of the gravitational force is

output.

P1 = 0, Y = radial component per unit mass

P2 = 1, Y = transverse component per
unit mass

Control and Input/Output Group

35. Input

INPUT Y

The Input symbol is used in two different ways

by Itas; they will be considered separately.

I. INPUT block as an input file.

The output, Y, is equal to the amplitude

value of a time-amplitude sample from the

requested input file. The user specifies,

using options on the Analysis-Execution menu,

the stream of expected sample times; if a

sample does not occur at an expected time,

the system automatically interpolates to the

requested time.

&38

J

The value of the single parameter determines

the input file which will be used by an

INPUT block. Parameter values of 1 through 4

specify corresponding input files as defined

in the Analysis-Execution menu.

2. INPUT block - page connector

The INPUT block may get its input from another

page of the diagram instead of a file. When

used in this manner, the INPUT block must be

coupled to an OUTPT block of a different page.

The OUTPT-INPUT coupling is done by giving

each block the same parameter value; negative

values of the parameter are used to indicate

paging.

36. Output

A
OUTPT

The OUTPT symbol is used in two different ways by

Itas, each will be considered separately.

1. OUTPT block - POT file output

The output is written to the designated

file along with the generated time of the

sample, (see INPUT block discussion).

39

I

The value of the single parameter determines

which output file will be written. Parameter

values of 5-8 are used as output file numbers

and are defined by the user on the Analysis-

Execution menu.

2. OUTPT block - as page connector.

The OUTPT block may send its output to one or

more pages of the diagram, instead of a file.

When used in this manner the OUTPT block must

be coupled to an INPUT block on another page.

The OUTPT-INPUT coupling is done by giving

both blocks the same parameter value; negative

values are used to indicate that an OUTPT/

INPUT block is used as a page connector.

37. Time

TIME T

Generates the time, Ti = To+(i-1)*AT, of the ith

cycle of the analysis run.

To start time as specified by the user on

the Analysis-Execution menu

4

.... 4 0
.4 _ ~t. Wl

AT = time increment as specified by the user on

the analysis-Execution menu.

38. Display

A DISP

Generates a display, on the CRT of the input A

to the DISP block. The frequency of the display

is controlled by the user through the setting of

the display ratio on the Analysis-Execution menu.

A display ratio of N means a display every Nth

cycle of the analysis run.

39. Kill

A KILL Y

Generates a signal to the system, when the input

A changes from negative to positive, that ter-

minates the program run just as if the execution

stop time had been reached.

41

When the kill condition does not exist, Y=A and

the KILL block effectively does nothing.

When the run is killed, a termination message is

displayed on the CRT. The user can tell from the

display when the run was aborted and which KILL

block caused it to abort.

40. Pause

A PAUSE Y

Generates a pause in the operation when the input

A changes from less than to greater than Para-

meter 2.

When the pause condition does not exist, Y=A

and the PAUSE block effectively does nothing.

At pause time, the CRT display indicates when and

where the pause occurred. The user may either

continue the run or kill the run. The kill pro-

cedure acts as though the stop time has been

reached.

Two parameters are provided, the first is ignored

and the second determines the pause condition.

42

4

_ _, _i ! -|,_

41. Run Time Estimator

A ETC Y

Estimates the time remaining to completion based

on the time to execute ten cycles and the number

of cycles in the complete program. An average

time per cycle is computed over the first ten

cycles and is assumed to remain constant over the

remaining cycles in the run.

Tr-Ti0* [c _1] where Tr = time remaining after

ten cycles.

TO = time for ten cycles

Nc total number of cycles

The estimated time is written on the CRT after

the eleventh cycle is finished.

The output Y=A at all times.

Composite Functions Group

42. Delay

43

-al ..

Provides the system with a one cycle delay,

Yi = Ai-1 and Yo = P2

Parameter 1 is ignored and the initial output

is equal to Parameter 2.

43. Sample and Hold

A
OHOLD Y

D

This device holds and outputs a particular value

until directed to change it by the input control

signal.

Although the symbol indicates four input stubs,

only two are used at any one time. Any two of the

inputs can be selected each time the block is used.

The upper-most connected stub is the control signal

and the lower-most connected stub is the new sam-

ple value when the control signal indicates a new

sample is to be used. The initial sample value is

set equal to the value of Parameter 2.

When the control signal A, for example, is 0, then

the output Y=O. The value held by the device is

not changed.

When the control signal A=, then the output Y=

value in the hold register.

44

- l.

When the control signal A>O, the hold register

is set to the value of the lower-most connected

input stub, for example C, then the output Y is

set to the value of C.

Parameter 1 is ignored by the software.

44. Trapezoidal Integrator

A

INTG1 Y

This device performs a trapezoidal integration

with a one cycle delay. The input stubs are

summed (no more than one need be connected) to

form the input value.

The initial output, first cycle, of the inte-

grator Yo is equal to Parameter 1.

The next output Y1 is also equal to Parameter 1

since there is a one cycle delay in the output

of the integrator.

A second parameter is allocated to INTG1 and is

used as an internal holding register; the user is

not required to set P2 to an initial value.

45

OR Emir--

After two cycles the output of the integrator

is computed by the recursion formula:

Y = In-I + In-2 *&Tn= Yn-1 + 2

where I k = Ak + Bk + Ck + 0k

45. Differentiator

A DIFF Y

This device is a 3-point differentiator with no

delay in its output. It will compute the der-

ivative exactly for first and second degree poly-

nominals.

Three parameters are provided for; the first

is ignored,. the initial output Yo is set to Par-

ameter 2 and the second output Y1 is set to Par-

ameter 3. Parameters 2 and 3 are subsequently

used as holding registers.

In general, the equation for the derivative is:

Yi - (Ai- 2 " 4Ai-1 + 3*Ai)/2*AT

46. Simpson Integrator

A

46

This device is a Simpson integrator where the

initial output value is an input parameter and

the second output value is computed using the

trapezoidal process; subsequent integrations are

performed using Simpson's rule.

The output of INTG2 after the second cycle is

Yi i-2 3 i-2 X + 4* X 1 + X

where X = A+B+C+D.

The input stubs are summed, only one stub must be

connected, to form the value of the derivative

that is to be integrated.

There are fourteen parameters associated with the

INTG2 symbol, however, the user only sets Parameter

I, the remaining are used as internal holding

registers. Parameter 1 is set by the user to the

initial value of the integration.

While Simpson's rule requires only a record of the

two previous derivatives and their integrations,

it was decided to provide table space (parameter

space) and program logic for the possible Jncor-

poratlon of a more complex integrator.

The stability of the two Itas integrators can, in

general, be improved by decreasing the step size.

47

A way of decreasing the step size in Itas integra-

tors is to interpolate the input data stream. How-

ever, while integration is improved by interpola-

tion, the other Itas processes within a diagram

would also be forced to operate on interpolated

data, since all inputs are interpolated the same

amount. However, the increase in processing time

might prove to be a big drawback to excessive in-

terpolation. It is possible to modify Itas to do

the interpolation within the integrators themselves

and thus remove the objections to a pre-processor

interpolator.

47. Implicit Equation Approximator

APROX y

u Internal
eedbIancFlrnoal from a comparator

See symbol 48.

This device provides input approximation values

to a set of Itas symbols that form an implicit

equation.

There are two parameters associated with the

APROX symbol; the first is not used and the second

48
L(

is set to an initial approximation of the sol-

ution of the equation. Subsequent cycles of the

process are initialized with the solution to the

previous cycle; this appears to be a better

initialization than reusing the original input

parameter value.

In each cycle, successive approximations of the

function Y are internally fed back to the APROX block

from the comparator until one of the following con-

ditions exists(a)Y i = f(X,Yi) and lYi- i-i11

where Yi is the function value of an iteration, or (b)

the number of iterations exceeds the allowable

number, in which case the diagram execution is

stopped.

48. Implicit Equation Comparator

A
COMP Y

B

Internal feedback

to APROX

This device performs four functions in the Itas

solution of an implicit equation:

i) checks the solution for convergence
2 calculates the next approximation to the

solution when the current one is not suf-
ficiently close to the previous solution.

49

3) feeds the new approximation back to the
APROX block,

4) monitors the number of iterations per cycle.

The input stub A contains the present computed

value of the implicit function and stub B con-

tains the value used in the computation of A.

Pictorially the process appears as:

pr o " A p s

A = F(X,B) if fA-BJ & then Y =B

if not, then B = G(A,B)

There are four parameters associated with the

COMP symbol:

P not used

P2 number of allowable iterations
P3 the convergence delta(6)
P4 the fraction alpha used in computing the next

value of B to use, as indicated:

B = * A + (I-),B

4f. 4-Function Calculator

I III1L ~le

APR50

L-Nw4

This device computes a resultant value, Y, from

up to four inputs, where the computations to be

performed are governed by a set of parameters.

The input drivers are, in effect, packed in order

from top to bottom and unconnected stubs are ig-

nored. In this discussion, if there were any two

stubs connected they would be referred to as A

and B; if any three were connected they would be

called A, B, and C.

There are five parameters associated with the CAL

block but, at most, P2, P3 , and P4 are used.

The correlation between input stubs and para-

meters is:

P2 governs the relationship, fl, between A and B

P3 governs the relationship, f2 , between fI(AB)
and C

P4 governs the relationship, f3 , b~tweenf2 If1 (A,B),CJ and D

The functional meaning of the parameter values is:

Pi = add the two values defined by
i'= 2,'3, or 4

Pi - 2 subtract the two values defined by
i = 2, 3, or 4

Pi = 3 multiply the two values defined by
i = 2, 3, or 4

Pi = 4 divide the two values defined by
= 2, 3, or 4

Z77: 51

50. Function Generator

T_ Y
FGEN1

This device performs a linear interpolation,

between user-set parameter values, based on the

value of the input driver (although four input

stubs are shown, only the upper-most one is used

in forming the output Y). The output

Y = f(A, P2i' P2i+1) where i = 1, 2, 3, ...12

The first parameter is ignored and the remaining

ten are paired as follows:

P21 P3 first abscissa, first ordinate

P4, P5 next abscissa, next ordinate

P 24 P 25 last abscissa, last ordinate

The set of parameters divides the continuum into

six subregions as follows:

If A< P2 then Y = P3

If P2 5 A< P4 then Y =(AP2) + P3
P4 - P2

If P24 5A then Y = P2 5

52

51. Variable Equation Generator

A
B VAR

This device solves the equation Y = F(A, B, C, D)

where at least one of the independent variables

must exist. The function F may be a combination

of Fortran operators and simple

algebraic and trancendental functions.

The equation is entered as though it were a string

of parameters under the "Modify Parameter Option".

The equation must begin with Y = and may contain

80 characters.

The set of allowable symbols, characters- and op-

erators is:

A, B, C, D, SIN, COS, TAN, ASIN, ACOS, ATAN, EXP,

ALOG, ALOG1O, SQRT, +, -, , ** : ()

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and a blank.

The program has limited error checking capabil-

ities; it monitors the equation for illegal

functions, non-allowable characters, misplaced

parentheses, an inconsistent set of parentheses

and an illegal sequence of operators.

'! 53

REFERENCES

1. H. Feldstein, Final Technical Report, F30602-77-C-0062,

RADC-TR-78-271, "ITAS" dated January 1979, Harris

Corporation, Electronic Systems Division, (B034567L).

2. D. W. Johnson, Final Technical Report, F30602-77-C-0210,

RADC-TR-78-143, "Interactive Programming and Analysis Aids"

dated June 1978, Harris Corporation, Electronic Systems

Division, (B028910L).

55

~1 ____ __ UAW

>1 Of
CeW ewer

ttpp
IL md Conttot

4f 4

ji;
4

I

2-W lp"7"

